Overlay QoS using Closed-Loop Control: Expected Minimum Rate Service

David Harrison, Yong Xia, Arvind Venkatesh, Shiv Kalyanaraman,

Rensselaer Polytechnic Institute shivkuma@ecse.rpi.edu

http://www.ecse.rpi.edu/Homepages/shivkuma Shivkumar Kalyanaraman

Rensselaer Polytechnic Institute

Big Picture: Overlay Network Services

- □ <u>Lightweight</u> network svcs (eg: QoS, multi-paths) can dramatically enhance application-perceived performance
 - □ Overlay => such services in a <u>multi-provider</u> environment, or
 - □ <u>Dramatically reduced complexity</u> of network services in a <u>single provider</u>
 - □ Distributed parameter provisioning, no admission control...

What is Closed-loop QoS? (Qualitatively)

- □ Scheduler: differentiates service on a *packet-by-packet* basis
- □ **Loops:** differentiate service on an *RTT-by-RTT* basis using *edge-based policy configuration*.
 - Differentiation/Isolation meaningful in steady state only...

 Shivkumar Kalyanarama

Rensselaer Polytechnic Institute

Expected Min Rate (EMR) Service: Sample Steady State Behavior

Flow 1 with 4 Mbps assured + 3 Mbps best effort

Flow 2 with 3 Mbps best effort

Architectural Advantages of Closed Loops

 Traffic management <u>consolidated</u> at edges (<u>placement of functions</u> in line with <u>E2E</u> principle)

- □ Architectural Potential:
 - □ Edge-based (distributed) QoS services,
 - Edge plays in application-level QoS

Rensselaer Polytechnic Institute

Diff-Serv vs Closed-loop QoS

Rensselaer Polytechnic Institute

Kelly's Framework: Illustration

Maximize $U(x) + U(y) = \log(x) + \log(y)$

Rensselaer Polytechnic Institute

Issue: QoS => Non-concave User Utility Functions

- A user with a <u>minimum rate</u> QoS expectation (<u>gracefully degrading into a weighted service</u>) can be modeled with a *non-concave* utility function.
- But this kind of U-function cannot be plugged into Kelly's non-linear optimization formulation directly!

Shivkumar Kalyanaraman

Rensselaer Polytechnic Institute

Luckily, the Sum of Non-Concave U-fns is <u>not</u> what we want to Optimize!

U(z) = $\log(z-0.6)$ if z > 0.6 (expected minimum rate) $10\log z$ if $z \le 0.6$ (graceful degradation to weighted svc)

- Can use <u>strictly concave</u> functions and define <u>multiple</u> optimization problems for the same QoS problem &
- <u>Dynamically</u> choose a <u>different optimization problem</u> when oversubscribed Shivkumar Kalyanaraman

No Over-Subscription Case: <u>Auxiliary</u> Problem

Let

$$x_{ip} = x_i - x_{ie}$$

i.e. flow i: two virtual sub-flows on same path

lacktriangle Think of a modified network $\stackrel{\sim}{N}$ with modified link capacities

$$\widetilde{C}_l = C_l - \sum x_{ie}$$
 Provide *proportio* network capacity

Provide *proportional fairness* on *residual* network capacity

Handling both *under-* and *over-*subscription...

For a_i, x_i: (<u>primary</u> problem)

$$\begin{array}{ll} maximize & \sum\limits_{i \in I} a_i \ln x_i \\ \\ subject \ to & \sum\limits_{i \in I_l} x_i \leq c_l, \ \forall l \in L \\ \\ x_i > 0, \ \forall i \in I \end{array}$$

Effective when:

$$a_i = A_i$$

$$a_i = A_i$$

$$q_l \le Q_l, \quad \forall l$$

For a_{ip}, x_{ip}: (<u>auxiliary</u> problem)

$$\begin{array}{ll} \textit{maximize} & \sum\limits_{i \in I} a_{ip} \, ln \, x_{ip} \\ \textit{subject to} & \sum\limits_{i \in I_l} x_{ip} \leq c_l - \sum\limits_{i \in I_l} x_{ie}, \; \forall l \in L \\ x_{ip} > 0, \; \forall i \in I \end{array} \right) \begin{array}{l} \text{Effective when:} \\ \sum\limits_{i \in I_l} x_{ie} < c_l, \quad \forall l \\ q_l \leq Q_l, \quad \forall l \\ a_i \leq A_i \end{array}$$

Effective when:

$$\sum_{i \in I_l} x_{ie} < c_l, \qquad \forall l$$

$$q_l \leq Q_l$$
,

$$a_i \le A_i$$

If <u>under-subscribed</u>, solve the aux-problem; and the

primary problem is automatically solved (note: $a_{ip} = constant$)
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute

Accumulation-Based Congestion Control

Key idea: develop a notion of "accumulation" (a_i or a_{ip}) as a steering parameter for QoS

Why accumulation? Why not just use weighted AIMD?

- Loss-based CC fails to provide large range of QoS capabilities
- Couples transient dynamics of CC with equilibrium specification
- Interacts with TCP reliability mechanisms (eg: timeout)

Why not ECN or AQM schemes?

- Want to keep AQM support as optional, not mandatory

Why not use just Vegas?

- Accumulation is an <u>abstract dynamical concept</u>.
- Vegas and Monaco attempt to provide <u>estimators</u> for accumulation.
- Vegas' accumulation estimator is not robust

Accumulation: Definition & Physical Meaning

$$a_i(t) = \sum_{j=1}^{J} q_{ij} \left(t - \sum_{k=j}^{J-1} d_k \right)$$
 nivkumar Kalyanaraman

Rensselaer Polytechnic Institute

Accumulation-based Control Policy

- \Box control objective: keep $a_i(t) = a_i^* > 0$
 - \Box if goal $a_i(t) = 0$, no way to probe increase of available b/w;
- control algorithm :

if
$$a_{i}(t) < a_{i}^{*}$$
 then $\lambda_{i} \uparrow$
if $a_{i}(t) > a_{i}^{*}$ then $\lambda_{i} \downarrow$
recall $: \Delta a_{i}(t, \Delta t) = [\overline{\lambda_{i}}(t - d_{i}^{f}, \Delta t) - \overline{\mu_{i}}(t, \Delta t)] \times \Delta t$

Example control algorithm :

$$w_{i}(t) = -k \cdot f(a_{i}(t) - a_{i}^{*})$$

where
$$f \uparrow, \quad only \quad f(0) = 0, \quad k > 0$$
Shivkumar Kalyanaraman

Rensselaer Polytechnic Institute

Monaco Accumulation Estimator

priority fifo queues:

1) high priority queue for **out-ofband** control packet

2) low priority queue for **in-band control packet and data packet**

Can be done w/ IP precedence on existing routers in Internet!!

Rensselaer Polytechnic Institute

ACC: Monaco vs Vegas (estimation robustness)

Fig. 4. Comparison between Vegas, Vegas-k and Monaco under rtt_p (or basertt) Estimation Error

Key Notion: "Accumulation"

- Accumulation-based congestion control (ACC) is a nonlinear optimization, where user i maximizes: $U_i(x_i) = a_i \ln x_i$
 - \square Accumulation (a_i) is the <u>weight</u> (w_i) of the weighted prop. fair allocation
- Accumulation is hence a "*steering*" parameter:
 - Equilibrium <u>accumulation</u> allocation => Equilibrium <u>rate</u> allocation!
 - □ Dynamics of CC scheme <u>decoupled</u> from equilibrium spec (unlike AIMD)
- Accumulation has a *physical* meaning: sum of buffered bits of the flow in the path
- \square Accumulation is related to the <u>lagrange multiplier</u>, I.e., $\mathbf{a_i} = \Sigma \mathbf{p_l}$

- For two flows i,k sharing the <u>same</u> path, $\mathbf{a_i} / \mathbf{a_k} = \mathbf{x_i} / \mathbf{x_k}$
 - □ FIFO queues => arrival order decides departure order
 - => <u>buffer occupancy decides rate allocation</u>

Rensselaer Polytechnic Institute

Over-subscription: Key Idea

• The virtual sub-flows x_i , x_{ie} , x_{ip} are on the <u>same path</u> (same <u>real</u> flow!):

$$x_{ie} + x_{ip} = x_{i}, \qquad \forall i$$

$$a_{ie} + a_{ip} = a_{i}, \qquad \forall i$$

$$\begin{vmatrix} a_{ie} \\ x_{ie} \end{vmatrix} = \frac{a_{ip}}{x_{ip}} = \frac{a_i}{x_i}, \quad \forall i \quad \dots \text{(I)}$$

• And,

$$a_{ip} = const = a_i - a_{ie} = a_i (1 - \frac{x_{ie}}{x_i}), \quad \forall i \quad \dots \text{(II)}$$

- a_i , x_i are measurable, $x_{ie} = \frac{\widetilde{x}_{ie}}{\widetilde{x}_{ie}}$ (contracted rate), if <u>under-subscribed</u>
- During over-subscription, $\sum_{i \in I_l} \widetilde{x}_{ie} \geq c_l$, $\exists i \in I_l$
- Since $a_{ip} = \underline{constant}$, eqn (II) implies that $\uparrow x_{i} \uparrow a_{i} \underline{unboundedly}$
- But $a_i \le A_i$
 - The auxiliary problem drops out for some flows (eg: bronze flows) and
 - Their rate is determined by the <u>primary</u> problem
 (I.e. gracefully degraded to a <u>weighted proportional fair allocation</u>)

Rensselaer Polytechnic Institute

EMR Building Block

Accumulation

$$a_{i} = x_{i}d_{i}$$

$$a_{ie} = x_{ie}d_{i}$$

$$X_{ip}$$

$$X_{ip}$$

$$X_{ie}$$

$$a_{ip} = (x_i - x_{ie})d_i$$

Accumulation limit

Target

□ Control Law

$$\Delta w_i = -\kappa \max(a_{ip} - a_{ip}^*, a_i - A_i)$$

Estimated accumulation in virtual network

Rensselaer Polytechnic Institute

Virtual Accumulation (with AQM): Integration with UIUC Work (Srikant)

□ Use virtual queueing delay, vd.

- □ Communicate *vd* in probe packets (add vds on path).
- □ <u>Accumulation = physical + virtual accumulation</u>

$$a_i = x_i(d_i + \sum vd_l)$$

□ Both AQM and non-AQM nodes in same network.

Rensselaer Polytechnic Institute

Simulation/Implementation/Testing Platforms

MIT's Click Modular Router
On Linux:
Forwarding Plane

Modular

Router

Utah's **Emulab** Testbed:

Experiments with

Linux/Zebra/Click implementation

Rensselaer Polytechnic Institute

Single Bottleneck Topology

All links are 100Mbps. S=Source, D=Destination, R=Router.

S0-D0 offered an expected minimum rate

Rensselaer Polytechnic Institute

Compared to Diffserv AF (TCP+RIO)...

- □ Size of TCP oscillations increases with send rate.
- Achieving high assurances requires re-parameterizing bottleneck to permit large queues.

Service Multiplexing Topology

- Bandwidth for all unlabelled links are 1Gbps; Delay 1ms;
- AQM+VD at router R1, no AQM at other routers

Rensselaer Polytechnic Institute

No oversu Moderate ove Gross oversubscription Web $< m_{00} = 30$, $< m_{01} = 35$, $A_{01} = < m_{02} = 50$, $A_{02} = 600$ Bending the mark that = 10, =

Summary

QoS can be viewed as a congestion control problem

and therefore,

QoS can be posed in Kelly's optimization framework

Challenges:

- 1. What about the non-concavity of QoS utility functions?
- 2. Can we do away with admission control?

<u>Ans:</u>

- 1. Define & Solve an Auxiliary Optimization Problem
- 2. Alternative Convex Constraints in Lagrange Domain can avoid need for admission control, allowing graceful service degradation

Rensselaer Polytechnic Institute

Future Work

- Distributed parameter setting guidelines w/o admission control
- Broader set of service semantics
- Deployment on PlanetLab
- Multi-ISP issues:
 - Data-plane: variable delay virtual links
 - Control-plane: accounting, SLA verification, minimal signaling architecture
- Overlay Qo5 in multi-hop wireless networks
- Applications: interactive/streaming video, VoIP over e2e

Rensselaer Polytechnic Institute

<u>In General:</u> Closed-Loop => Better-than-Best-Effort Services

- A weaker/broader view of QoS:
- □ Qo5: "Better performance (given fixed routes)":
 - Described a priori by a set of parameters AND/OR
 - □ Measured *a posteriori* by a set of metrics.

(extra slides on results if you are interested)

QoS spectrum

Summary: Closed-Loop QoS

- QoS can be viewed as a congestion control problem and posed in Kelly's optimization framework
 - Allows distributed admission control, or even services <u>without</u> <u>admission control (distributed parameter choices)</u>.
 - Tradeoff: objectives achieved only in steady state
- Accumulation-based schemes (eg: Monaco) provide a physically meaningful steering parameter (accumulation) relating to queue length
 - □ Which is also the lagrange multiplier, and
 - □ Is the weight parameter in weighted proportional fairness allocation
 - Requires an extra priority queue for control pkts (IP precedence)
 - AQM support => virtual accumulation => ~0 queues
- Convex constraints on accumulation, queue length (I.e. <u>in lagrange</u> multiplier domain):
 - assures unique optimum; and
 - leads to graceful degradation of service assurances
- Schemes implemented on Linux and tested in Utah Emulab to be deployed in PlanetLab
- Developing multimedia applications to leverage these lightweight QoS capabilities along with multi-path capabilities in an overlay network

Rensselaer Polytechnic Institute

EMR Algorithm (for reference)

Algorithm 1 Expected Service Pseudo-code at Ingress

```
cwnd = the congestion window in bytes

pwnd = the congestion window in the previous RTT

ssthresh = the slow start threshold

srtt = the smoothed RTT estimation

A = the total accumulation limit

\varepsilon = the target accumulation beyond the expected mini-

mum rate
```

- (1) $a = \text{reverse_ctrl_pkt.accumulation};$
- (2) x = pwnd * 8.0/srtt;
- (3) $a_p = max(a * (1 x_e/x), 0.0);$
- (4) pwnd = min(pwnd + mtu, cwnd);
- (5) $cwnd = pwnd k * max(a_p \varepsilon, a A);$
- (6) if $(a > A || a_p > \varepsilon)$ { ssthresh = cwnd; }
- (7) else {
 - (7.1) if (pwnd + mtu >= ssthresh)ssthresh = cwnd;
 - (7.2) cwnd = min(pwnd * 2.0, ssthresh);
- (8) rate_limit = cwnd * 8.0/srtt;

Rensselaer Polytech

r Kalyanaraman

Eg: Weighted Service w/ Loss-based vs Accumulation-based schemes

Rensselaer Polytechnic Institute

No AQM and EMR Near Full Capacity

AVQ+VD+ EMR Near Full Capacity

Scalable Best-effort TCP Service

Without Overlay Scheme

With Overlay Scheme

Queue distribution to the edges => can manage more efficiently

CoV vs. No of Flows

FRED at the core <u>vs</u>. FRED at the edges with overlay control between edges

2 FRED edge shapers with OnOff bottleneck 5 FRED edge shapers with OnOff bottleneck

10 FRED edge shapers with OnOff bottle

Weighted Sharing

- Proposed many times (MulTCP, TCP-SD, TCP-LASD, IP-Trunking, Nonlinear Optimization-based Congestion Control).
- MulTCP and TCP-SD use loss-based differentiation.

Rensselaer Polytechnic Institute

Δ (Flow's Queue Contribution) at **One FIFO Router**

bit

 b_2

b₁

delay

queue

- flow i at router j
- \square arrival curve $A_{ii}(t)$

& service curve $S_{ii}(t)$

- cumulative
- continuous
- non-decreasing

$$:: q_{ij}(t) = A_{ij}(t) - S_{ij}(t)$$

$$\therefore q_{ij}(t + \Delta t) = A_{ij}(t + \Delta t) - S_{ij}(t + \Delta t)$$

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman

time

Δ (Accumulation): Series of FIFO Routers

then
$$\Delta a_{i}(t, \Delta t) = a_{i}(t + \Delta t) - a_{i}(t)$$

$$= \sum_{j=1}^{J} q_{ij}(t + \Delta t - \sum_{k=j}^{J-1} d_{k}) - \sum_{j=1}^{J} q_{ij}(t - \sum_{k=j}^{J-1} d_{k})$$

$$= \sum_{j=1}^{J} \Delta q_{ij}(t - \sum_{k=j}^{J-1} d_{k}, \Delta t)$$

$$= \sum_{j=1}^{J} [\overline{\lambda}_{ij}(t - \sum_{k=j}^{J-1} d_{k}, \Delta t) - \overline{\mu}_{ij}(t - \sum_{k=j}^{J-1} d_{k}, \Delta t)] \times \Delta t$$

$$= [\overline{\lambda}_{i}(t - d_{i}^{f}, \Delta t) - \overline{\mu}_{i}(t, \Delta t)] \times \Delta t$$

$$= I_{i}(t - d_{i}^{f}, \Delta t) - O_{i}(t, \Delta t)$$

where Rensselaer Polytechnic Institute

$$d_{i}^{f} = \sum_{j=1}^{J-1} d_{j}$$